

Non-caloric sweeteners and special groups: children and pregnant women

Bernadene Magnuson PhD, FATS University of Toronto, Canada

Introduction – why special?

- Time of rapid growth and development.
- Need calories and nutrients.
- Generally recommend intake of nutrient-rich foods and beverages.

Introduction – why special?

- Consumption of noncaloric sweeteners useful to:
 - Control weight gain
 - Control blood sugar

AND ROLL

Outline

- Introduction
- The controversies
- The data
- Children
- Pregnant women
- Conclusions

Controversy

"Aspartame breaks down into methanol and excitatory amino acids that affect the brain, so that is why aspartame is toxic."

TRUE OR FALSE??

The answer -

Aspartame breaks down into methanol and excitatory amino acids that affect the brain - TRUE – aspartame is completely digested in the intestine, and amino acids are used by body, including brain.so that is why aspartame is toxic."

<u>FALSE!</u> – levels of amino acids and methanol in aspartame are no higher than the amount found in common

foods.

Phenylalanine, Aspartic Acid & Methanol Content of Foods

	Phenylalanine*	Aspartic Acid*	Methanol
12 oz diet beverage with aspartame	90	72	18
12 oz milk	606	888	-
Medium banana	58	146	21
12 oz orange juice	36	276	23
12 oz tomato juice	58	346	107
			*amino acids_

All amounts in mg

Controversy

Aspartame breaks down into methanol and methanol can cause methanol poisoning. Therefore aspartame is toxic because it causes methanol poisoning."
TRUE OR FALSE??

The answer

levels.

- "Aspartame breaks down into methanol –
- TRUE aspartame contains a methyl group. As with many foods, methanol is released during digestion.
- Methanol can cause methanol poisoning".
- TRUE at HIGH levels which cause build-up in blood.
- "Therefore aspartame is toxic because it causes methanol poisoning."
- FALSE! Amount of methanol in aspartame & other foods is too low to change blood

Kostic and Dart, 2003

Formaldehyde – sounds scary!

- is a constituent of many foods!
- produced during metabolism of foods and many drugs
 - Caffeine from 1 cup of coffee = 30 mg formaldehyde
- is essential in one-carbon pool metabolism.
 - Formic acid used in synthesis of nucleotides for DNA
- Is calculated that >50,000 mg formaldehyde is produced and metabolized daily in an adult human
- adult human liver can metabolize 22 mg formaldehyde per minute – so very rapid metabolism.
- Also rapid metabolism in young humans

Effect of aspartame on blood methanol and formic acid

Subjects	Dose (mg/kg)	Methanol and formic acid (mg/dL)	
Health adults	34 mg/kg —	methanol – not detected (ND)	
(intake from	100 mg/kg —	methanol peak level 1.27, ND at 8 hr	
food/beverage Average= 5	150 mg/kg —	methanol peak level 2.14, ND at 24 hr	
	200 mg/kg —	methanol peak level 2.58, ND at 24 hr	
High = 15 mg/kg		No change in formic acid levels	
Healthy Infants	34 mg/kg —	methanol – not detected	
	50 mg/kg —	methanol – not detected	
Stegink <i>et al</i> ., 1981, 1983, 1989	100 mg/kg — methanol peak = 1.02		
		No change in formic acid levels	

Aspartame DOES NOT cause methanol poisoning

Methanol toxicity > 126.0 mg/dL; and accumulation of formic acid

Controversy

 "Aspartame causes neurological damage, including behavior problems, headaches/migraines, dizziness, seizures, epilepsy, nausea, numbness, muscle spasms, depression, fatigue, irritability, insomnia, vision problems, hearing loss, breathing difficulties, anxiety attacks, slurred speech, loss of taste, vertigo, and memory loss"

TRUE OR FALSE??

http://www.mercola.com/article/aspartame/dangers.htm

The answer

Aspartame causes neurological damage, and memory loss."

FALSE - Many studies have been conducted and have found no effect, even at levels much higher than humans consume.

 Many accusations and individual reports - but an overwhelming number of research studies find no effect as discussed in next slides.

Learning and behavior?

- Animal studies
 - Up to 4% of diet (4000 mg/kg/d), no effect on neuronal function, learning or behavior despite changes in blood and brain amino acids levels (many studies). At 9% diet, impaired learning as have nutritional imbalance with high levels of 2 amino acids.
- Controlled Human studies
 - Normal children, hyperactive children, children with PKU, aggressive school boys, sugar-sensitive children (many references)
 - Healthy adults, airline pilots, adults with Parkinsons disease, adults with depression.
 - No effect in all except 1 study on depression not replicated

Seizures?

- No effect on seizures doses up to 1000 mg/kg/d
 - Evaluated in a variety of animal models to induce convulsions and seizures (Pinto and Maher, 1988; Guiso et al., 1988; Cane et al., 1989; Tilson et al., 1989; Helai et al., 1996)
 - Genetically epilepsy-prone rats (Daily et al., 1991)
- No significant effect on seizures observed in controlled human studies with doses of 34-50 mg/kg
 - Children diagnosed with petite mal seizures, individuals with epilepsy, self-reported aspartamesensitive adults (Camfield *et al.*, 1992; Shaywitz *et al.*, 1994, Rowan *et al.*, 1995)

Headaches?

- Have been several, conflicting results with most showing no effect; however some small studies suggesting may be a susceptible subset.
- There is no known mechanism.
- Is a difficult endpoint to study as there is no objective measure for headache – must be self reported, susceptible to power of suggestion.

Is aspartame safe for children?

- Metabolism of aspartame
 - No difference between children and adult
- Effect on behavior extensively assessed
 - No effect even with habitual use
- Effect on childhood cancers
 - No association (Bruin et al. 2005)

Aspartame is safe for children (>1 yr) at levels currently consumed

Are steviol glycosides safe for children?

- Safety has been demonstrated for purified steviol glycosides and approval for purified preparations.
- Animal studies found no effects of purified steviol glycosides on development and growth.
- Few studies have been reported on steviol glycosides and children.

Are sweeteners safe for pregnant women?

Aspartame –

- Two recent reports need to be addressed:
 - 1. Rat study by Soffritti *et al.*, (2010)
 - 2. Cohort study by Halldorsson *et al.*, (2010)
- EFSA reviewed and concluded these studies do not provide evidence that aspartame was causative factor.

(EFSA Journal 2011;9(2):2089)

Aspartame Administered in Feed, Beginning Prenatally in Male Swiss Mice

- Pregnant mice were fed aspartame in "Corticella diet" at doses equivalent to 242, 987,1919 and 3909 mg/kg/day.
 Offspring then fed same diets as mothers.
- Main finding reported by authors increase in liver and lung tumors in male offspring of rats fed highest doses.
- This group has published several studies on aspartame and each time, report increased cancer at different site/sex. Methodology and interpretation has been reviewed and criticized by many authorities, including EFSA.
- NOTE 14 other animal studies and 6 epidemiological

studies have found **no** evidence of increased cancer. Soffritti *et al.* (2010)

"Artificially sweetened soft drinks and risk of preterm delivery"

- Large study of 59,334 Danish pregnant women
- Reported higher odds ratio for risk of preterm delivery in women who consumed >4 servings/d
- Strengths large study, diet information collected
- Limitations Small number report >4 servings, also differences in BMI, smoking, social status, single – authors state was adjusted for.
 - propose effect due to methanol from aspartame
 - did not consider other dietary factors, or determine which sweetener was consumed.

Are sweeteners safe for pregnant women?

- Stevia and Stevia glycosides
 - Crude extracts of Stevia plant are NOT recommended as adverse effects have been reported.
 - Studies on the highly purified steviol glycosides that are approved for use, have found no effects on reproduction and development.

Reproductive Toxicity Studies -Purified Steviol Glycosides

Reb A (97% purity) was administered via the diet to rats for two generations (Curry et al., 2008).

- No effect in either the F₀ or F₁ generation
 - body weight, body weight gain, food consumption.
 - reproductive performance: mating performance, fertility, gestation lengths, estrous cycles, or sperm motility, concentration, or morphology.
 - Survival, reflex development, body weight, sexual maturation
 - Highest dose ~ 2,000 mg/kg bw/day.

Conclusions

- Children and pregnant women are at higher risk for toxicity for all compounds because of increased consumption, rapid growth and development.
- This is understood when data is reviewed for regulatory approval and ADIs are established for sweeteners.

Conclusions

Well-designed controlled studies support that aspartame and purified steviol glycoside sweeteners are safe for children and pregnant women at use levels currently consumed, which are well below the established ADIs.

Thank you!

Questions? b.magnuson@utoronto.ca